Ученые надеются, что твердотельные термофотоэлектрические элементы (ТФЭ) без движущихся частей смогут достичь более высокой эффективности при более высоких температурах, когда речь идет о преобразовании тепла в электричество — и проложить путь к электросетям, полностью основанным на возобновляемых источниках энергии.
Один из таких TPV-элементов установил новый мировой рекорд эффективности — 40 процентов, сообщают исследователи. Это лучше, чем у паровых турбин, традиционно используемых для преобразования тепла в электричество, которые обычно достигают 35% и имеют верхний температурный предел.
ТПВ преобразуют высокоэнергетические фотоны из раскаленных источников тепла в электричество. В сочетании с тепловыми батареями они могут улавливать энергию Солнца и хранить ее, высвобождая электричество по мере необходимости.
«Одним из преимуществ твердотельных преобразователей энергии является то, что они могут работать при более высоких температурах с меньшими затратами на обслуживание, потому что у них нет движущихся частей», — говорит инженер-механик Асегун Генри из Массачусетского технологического института (MIT).
«Они просто сидят там и надежно генерируют электричество».
Термофотоэлектрический элемент, участвующий в рекордном преобразовании, может вырабатывать электричество из источников тепла при температуре от 1900 до 2400 градусов Цельсия (3452-4352 градусов по Фаренгейту). Эти температуры слишком высоки для работы обычных паровых турбин из-за наличия подвижных частей.
Теперь эффективность этих элементов также растет, что делает их более жизнеспособными. Предыдущий рекорд составлял 32 процента, в то время как большинство ячеек TPV, произведенных на сегодняшний день, имеют КПД около 20 процентов.
Рекорд эффективности был измерен с помощью датчика теплового потока для измерения тепла, поглощаемого ячейкой размером около сантиметра в квадрате. Высокотемпературная лампа использовалась для изменения количества тепла, которому подвергалась ячейка, что показало, что она действительно подходит для установки в более крупную систему.
«Мы можем получить высокую эффективность в широком диапазоне температур, характерном для тепловых батарей», — говорит Генри.
Повышение эффективности в основном связано с используемыми материалами, которые имеют так называемую низкую полосу пропускания — зазор, через который должны пройти электроны для выработки электричества. В данном случае исследователи использовали материалы с более высокой пропускной способностью, а также несколько стыков (или слоев материала).
Используются три слоя: сплав с высокой пропускной способностью для улавливания высокоэнергетических фотонов и превращения их в электричество, сплав с низкой пропускной способностью для улавливания низкоэнергетических фотонов, проскользнувших через первый слой, и золотое зеркало для отражения фотонов, прошедших весь путь, обратно к источнику тепла, что позволяет минимизировать потери тепла.
Доказав работоспособность, надежность и эффективность термофотоэлектрического элемента, ученые могут приступить к работе по его расширению и комбинированию с другими элементами для создания полноценной системы производства энергии — причем такой, которая не производит углерода в процессе использования.
«Термофотоэлектрические элементы были последним ключевым шагом на пути к демонстрации того, что тепловые батареи являются жизнеспособной концепцией», — говорит Генри. «Это абсолютно важный шаг на пути к распространению возобновляемой энергии и переходу к полностью декарбонизированной энергосистеме».
Исследование было опубликовано в журнале Nature.
Оригинал earth-chronicles.ru