Достижение описано в научной статье, опубликованной в журнале Nature коллаборацией XENON.
«Мы на самом деле видели, как этот распад произошёл. Это самый долгий и самый медленный процесс, который когда-либо наблюдался непосредственно, и наш детектор тёмной материи оказался достаточно чувствительным, чтобы его зафиксировать, – говорит соавтор исследования Итан Браун (Ethan Brown) из Политехнического института Ренсселера в США. – Удивительно наблюдать за этим процессом, и это [открытие] говорит о том, что наш детектор может зафиксировать самое редкое [событие] из когда-либо зарегистрированных».
«Вести.Наука» (nauka.vesti.ru) подробно рассказывали о детекторе XENON1T. Напомним, что его чувствительная часть представляет собой сосуд с 1300 килограммами жидкого ксенона. Он находится в «холодильнике», погружённом в воду. Вся конструкция на глубине 1500 метров под горным массивом Гран-Сассо-д’Италия.
Идея состоит в том, чтобы предельно изолировать детектор от космических лучей и других потоков частиц. Тогда ядрам атомов ксенона будет практически не с чем вступать в реакции. Не с чем, кроме таинственной и вездесущей тёмной материи, которая, возможно, иногда всё-таки взаимодействует с обычным веществом, в том числе и с ксеноном.
Обнаружить тёмную материю детектору не удалось. Однако на этот раз он принёс физикам другой впечатляющий результат. Аппаратура зафиксировала распад ядра ксенона-124.
Даже один электрон крайне редко оказывается «в нужное время в нужном месте» и бывает захвачен ядром. Почти невозможно, чтобы два таких события произошли одновременно. Поэтому среднее время жизни ядра при этом типе распада очень велико. Для ксенона-124 оно составляет порядка 1022 лет, что в триллион раз превышает возраст Вселенной (порядка десяти миллиардов лет).
К счастью для физиков, среднее время жизни – именно среднее. Всегда можно надеяться, что в большой массе вещества найдётся ядро, которое распадётся быстрее.
В этот раз физикам повезло. Ядро ксенона захватило два электрона и превратилось в ядро теллура. Оставшиеся электроны стремительно перестроились, чтобы занять освободившиеся энергетически выгодные места поблизости от ядра. При этом они испускали фотоны (как всегда бывает, когда электрон переходит с верхнего энергетического уровня на нижний). Это излучение и зафиксировали датчики.
До сих пор распад подобного типа наблюдался только для двух изотопов: криптона-78 и бария-130. Однако для ксенона-124 среднее время жизни ядра значительно больше, так что это действительно рекорд.
Разумеется, наука – не спорт, и физиков не интересуют рекорды ради рекордов. С нынешним открытием учёные получили прямые данные о времени жизни ядра при этом редком типе распада. Оно важно для понимания внутреннего устройства ядер.
Возможно, эти данные позволят обнаружить ещё более редкий и пока ещё гипотетический процесс – двойной безнейтринный распад. А уж он, в свою очередь, может подсказать, почему материя, из которой мы состоим, не была уничтожена антивеществом на заре существования Вселенной.
Напомним, что детектор XENON1T был запущен в 2016 году и остановлен в декабре 2018 года. Своей основной цели – обнаружения тёмной материи – он не достиг. Сейчас учёные готовятся к запуску новой фазы эксперимента – XENONnT. В этой установке масса ксенона будет втрое больше, а защита от посторонних воздействий ещё лучше, чем у XENON1T. В результате чувствительность детектора повысится примерно в десять раз. И тогда он, возможно, всё-таки зафиксирует загадочную тёмную материю.
Оригинал earth-chronicles.ru